Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Amel Cabort, Bruno Therrien, Klaus Bernauer and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
georg.suess-fink@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.059$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

[2,6-Bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine]trichlororhodium(III) dibenzene solvate

The structure of the mononuclear octahedral rhodium(III) complex, $\left[\mathrm{RhCl}_{3}(L)\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, with $L=2,6$-bis(3,4-dihydro- 2 H -pyrrol-5-yl)pyridine $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}\right)$, possesses a twofold axis passing through Rh , the equatorial Cl atom and the N atom pyridine ring.

Comment

In the context of our study on hydrogenation reactions catalysed by transition metals, we have synthesized a rhodium complex containing the tridentate ligand 2,6-bis(3,4-dihydro2 H -pyrrol-5-yl)pyridine (Bernauer \& Gretillat, 1989). $\mathrm{RhCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ reacts with 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (L) in refluxing dichloromethane to afford in good yield $\left[\mathrm{RhCl}_{3}(L)\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, (I). The coordination of L to the Rh atom can be monitored by ${ }^{1} \mathrm{H}$ NMR; a position inversion and a downfield shift of the pyridinyl H atoms are observed. Thus, free ligand $\mathrm{H}_{\text {para }}=7.80$ p.p.m. and $\mathrm{H}_{\text {meta }}=8.15$ p.p.m. may be compared with coordinated ligand $\mathrm{H}_{\text {para }}=8.47$ p.p.m. and $\mathrm{H}_{\text {meta }}=8.34$ p.p.m.

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}
$$

(I)

The three N atoms of the tridentate ligand along with three Cl atoms form a distorted octahedral geometry around the metal atom in (I) (Fig. 1 and Table 1). Complex (I) crystallizes with two molecules of $\mathrm{C}_{6} \mathrm{H}_{6}$ per asymmetric unit. The bond distances and angles are similar to other $\left[\mathrm{RhCl}_{3}\left(\eta^{3}-L\right)\right]$ complexes; $L=$ bis(oxazolinyl)pyridine (Nishiyama et al., 1991), $L=\operatorname{bis}($ pyrazolyl)pyridine (Christenson et al., 1995), $L=$ 2,6-bis(ethylidyneimino)pyridine (Haarman et al., 1997), $L=$ 2,3,6-tris(2-pyridyl)-1,3,5-triazine (Paul et al., 1998), $L=$ 2,2':6', $2^{\prime \prime}$-terpyridine (Ziegler et al., 1999; Kwong et al., 2001).

The formation of five-membered chelate rings imposes an important distortion around the Rh atom. The $\mathrm{N} 1-\mathrm{Rh} 1-\mathrm{N} 2$ [79.54 (5) ${ }^{\circ}$] and $\mathrm{N} 1-\mathrm{Rh} 1-\mathrm{N} 1^{\mathrm{i}}\left[159.07(10)^{\circ}\right.$; symmetry code: (i) $\left.-x, y,-z+\frac{1}{2}\right]$ angles are significantly smaller than the values of 90 and 180° expected for an ideal octahedral geometry. The equatorial plane formed by the atoms of L together with Rh 1 and Cl 2 is planar, with an average deviation of $0.042 \AA$; only atoms C1 and C2 of the pyrrole fragment are out of plane, by -0.100 (2) and 0.088 (2) A, respectively. The distance between Rh1 and the central N2 atom of 1.941 (2) \AA is shorter than the other Rh1-N1 bond of 2.031 (2) \AA.

In the crystal structure, there is no meaningful interaction between the complex and the two benzene molecules, one molecule being parallel to the equatorial plane of (I) [4.0 (5) $\left.{ }^{\circ}\right]$ and the other being almost perpendicular [67.9 (2) ${ }^{\circ}$.

Experimental

To a dichloromethane solution (15 ml) of $\mathrm{RhCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(70 \mathrm{mg})$ was added dropwise a 5 ml solution of 2,6 -bis(3,4-dihydro- 2 H -pyrrol-5yl)pyridine ($58 \mathrm{mg}, 0.27 \mathrm{mmol}$). The mixture was stirred and refluxed for 2 h . After cooling to room temperature, a brown-orange precipitate was observed. The solid was filtered off and washed twice with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and once with diethyl ether to give $\left[\mathrm{RhCl}_{3}\{2,6\right.$-bis $(3,4-$ dihydro- 2 H -pyrrol-5-yl)pyridine)] in 65% yield [based on 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine]. To a small amount of $\left[\mathrm{RhCl}_{3}\{2,6\right.$ -bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine\}] dissolved in hot benzene was added diethyl ether. Crystals of (I) formed after a few days. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): $8.47(t, 1 \mathrm{H}), 8.34(d, 2 \mathrm{H}), 4.16(m, 4 \mathrm{H}), 3.50(m$, 4 H), $2.50(m, 4 \mathrm{H})$. MS (ESI, m / z): 444; $\left[\mathrm{RhCl}_{3}(L)\right]+\mathrm{Na}$. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{Rh}$: C $45.58, \mathrm{H} 4.23, \mathrm{~N} 8.39 \%$; found: C 45.24, H 8.26, N 4.14\%.

Crystal data

$\left[\mathrm{RhCl}_{3}\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=578.76$
Monoclinic, $C 2 / c$
$a=11.434$ (2) A
$b=10.630(2) \AA$
$c=20.948$ (4) A
$\beta=100.12(3)^{\circ}$
$V=2506.5(8) \AA^{3}$
$Z=4$
$D_{x}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000 reflections
$\theta=2.6-25.9^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, yellow
$0.5 \times 0.4 \times 0.1 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer φ oscillation scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.495, T_{\text {max }}=0.824$
8616 measured reflections
2341 independent reflections

Refinement

Refinement on F^{2}
1964 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-12 \rightarrow 14$
$k=-12 \rightarrow 13$
$l=-24 \rightarrow 25$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.059$
$S=0.98$
2341 reflections
147 parameters

Figure 1
The molecular structure of (I) (Farrugia, 1997). The $\mathrm{C}_{6} \mathrm{H}_{6}$ molecules and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were included in calculated positions and treated in the riding-model approximation.

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). The authors thank Professor H. Stoeckli-Evans for helpful discussions and free access to X-ray facilities.

References

Bernauer, K. \& Gretillat, F. (1989). Helv. Chim. Acta, 73, 477-481.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Christenson, D. L., Tokar, C. J. \& Tolman, W. B. (1995). Organometallics, 14, 2148-2150.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Haarman, H. F., Ernsting, J. M., Kranenburg, M., Kooijman, H., Veldman, N., Spek, A. L., van Leeuwen, P. W. N. M. \& Vrieze, K. (1997). Organometallics, 16, 887-900.
Kwong, H.-L., Wong, W.-L., Lee, W.-S., Cheng, L.-S. \& Wong, W.-T. (2001). Tetrahedron Asymmetry, 12, 2683-2694.
Nishiyama, H., Kondo, M., Nakamura, T. \& Itoh, K. (1991). Organometallics, 10, 500-508.
Paul, P., Tyagi, B., Bilakhiya, A. K., Bhadbhade, M. M., Suresh, E. \& Ramachandraiah, G. (1998). Inorg. Chem. 37, 5733-5742.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Ziegler, M., Monney, V., Stoeckli-Evans, H., Von Zelewsky, A., Sasaki, I., Dupic, G., Daran, J.-C. \& Balavoine, G. G. A. (1999). J. Chem. Soc. Dalton Trans. pp. 667-675.

